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Abstract
Artificial intelligence (AI) is profoundly transforming the paradigm of solid tumor drug development. By integrating multi-
omics data, spatial transcriptomics, and advanced computational models, AI has significantly accelerated the discovery and 
validation of new targets, compressing the traditional ten-year research and development cycle to two to three years. Genera-
tive AI platforms have optimized small molecule inhibitors, biologics, and messenger RNA vaccines, achieving breakthroughs 
in overcoming tumor heterogeneity, improving efficacy, and predicting drug resistance. However, clinical translation still faces 
challenges such as data bias, algorithm transparency, and the validation gap between models and real-world human experi-
ence. This review aims to systematically elaborate on the transformative role of AI in solid tumor drug development and to 
promote interdisciplinary cooperation as well as the construction of ethical frameworks to enable the full realization of preci-
sion oncology.
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Introduction
Solid tumor (ST) represents a key frontier in oncology, account-
ing for approximately 90% of cancer-related deaths. However, 
the path to developing effective therapies remains challenging, 
as evidenced by a mere 5% drug approval success rate, a stark 
contrast to the 15% seen in hematologic malignancies.1,2 This 
high failure rate highlights the substantial unmet needs and 
unique complexities inherent in ST treatment. The development 
of effective ST therapies is notably hindered by two interwoven 
challenges. First, prominent tumor heterogeneity, both within in-
dividual tumors (intra-tumor) and between patients (inter-tumor), 
leads to varied treatment responses and facilitates the emergence 
of drug resistance. Second, the complex tumor microenvironment 
(TME) constitutes a formidable barrier. Stromal components, 
particularly cancer-associated fibroblasts (CAFs), play a crucial 
role in drug resistance. CAFs can secrete factors that directly pro-
tect tumor cells from chemotherapy or remodel the extracellular 

matrix to impede drug penetration.3 Beyond the TME, the persis-
tent challenge of “undruggable” targets further limits therapeutic 
options, such as the notoriously elusive kirsten rat sarcoma viral 
oncogene homolog (KRAS) oncoprotein or transcription factors 
like myelocytomatosis oncogene (MYC) that lack conventional 
small-molecule inhibitor binding sites.4

Artificial intelligence (AI) is emerging as a powerful catalyst 
poised to revolutionize drug discovery for ST. It significantly 
shortens the timeline, compressing the traditional decade-long 
process to just two to three years. Companies such as Insilico 
Medicine exemplify this progress by leveraging generative AI to 
rapidly identify and validate a novel ubiquitin specific peptidase 
1 (USP1) inhibitor preclinical candidate. AI also reduces costs 
through sophisticated in silico methods such as virtual screen-
ing and predictive modeling of absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) modeling, prioritizing the 
most promising candidates for expensive wet-lab experiments. 
Furthermore, AI plays a crucial role in addressing the “undrug-
gability” paradigm. By facilitating the rational design of complex 
modalities such as proteolysis-targeting chimeras (PROTACs), 
which hijack the cell’s ubiquitin-proteasome system to degrade 
target proteins rather than inhibit them, AI is opening avenues for 
targeting previously inaccessible oncogenic proteins like KRAS 
and MYC. AI algorithms assist in predicting effective warheads, 
linkers, and E3 ligase binders, optimizing PROTAC design, and 
overcoming key challenges associated with this promising tech-
nology.5

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/OnA.2025.00009
https://crossmark.crossref.org/dialog/?doi=10.14218/OnA.2025.00009&domain=pdf&date_stamp=2025-08-13
https://orcid.org/0000-0002-8559-616X
https://orcid.org/0000-0002-8559-616X
mailto:jqin@ucas.ac.cn


DOI: 10.14218/OnA.2025.00009  |  Volume 3 Issue 2, June 2025 113

Li Y.H. et al: AI-driven solid tumor drug discovery Oncol Adv

This review systematically elaborates on the transformative role 
of AI across the ST drug development continuum, from target dis-
covery to clinical translation, aiming to foster interdisciplinary col-
laboration and the construction of ethical frameworks for precision 
oncology implementation.

AI-driven target discovery

Advances in single-cell and spatial omics
Over the past decade, single-cell sequencing technologies have 
rapidly advanced in speed and cost-effectiveness. Currently, 
more than ten distinct commercial platforms are available for 
high-throughput single-cell data collection.6 This technological 
progress has driven a remarkable expansion in single-cell RNA 
sequencing (scRNA-seq) research, with nearly 2,000 studies pub-
lished to date.7 The integration of scRNA-seq with AI has emerged 
as a cornerstone methodology for deciphering tumor heterogene-
ity. In pancreatic ductal adenocarcinoma (PDAC) research, spatial 
transcriptomics combined with single-cell sequencing revealed 
high expression of TNFRSF10A/TRAILR1 (death receptor) at 
the tumor-stromal interface, which drives immune escape via ac-
tivation of pro-survival signaling. Based on this, researchers uti-
lized the SELFormer deep learning (DL) model to perform virtual 
screening of drugs approved by the U.S. Food and Drug Adminis-
tration (FDA) and found that the mechanistic target of rapamycin 
(mTOR) inhibitor temsirolimus enhances TRAILR1-mediated ap-
optotic pathways by downregulating cellular FLICE (FADD-like 
IL-1β-converting enzyme)-inhibitory protein, providing a novel 
targeted therapy strategy for PDAC through targeting death re-
ceptors.8 Similarly, another PDAC study using a patient-derived 
xenograft model treated with gemcitabine led to the development 
of the scConGraph model. scRNA-seq analysis revealed upregula-
tion of growth differentiation factor 15 (GDF15) in acquired re-
sistant clones. Functional validation confirmed that inhibition of 
GDF15 restored tumor sensitivity to chemotherapy, establishing it 
as a therapeutic target.9

Visium spatial transcriptomics has been instrumental in map-
ping target interaction niches within TME. In a pan-cancer anal-
ysis, multiple machine learning approaches revealed lactate me-
tabolism gradients and lactate dehydrogenase A (LDHA)-mediated 
immune suppression, where lactate accumulation inhibits T-cell 
infiltration. Clustered regularly interspaced short palindromic re-
peats (CRISPR) validation confirmed that LDHA knockout en-
hances anti-tumor immunity, driving the AI-constructed 84-gene 
LM.SIG signature for predicting resistance to immunotherapy. 
This signature has guided combination therapies targeting LDHA 
and anti- programmed death 1 (PD-1) drugs, currently undergo-
ing preclinical studies.10 In colorectal cancer, VisiumHD resolved 
spatially confined selenoprotein P and secreted phosphoprotein 1 
macrophage subpopulations that drive immune escape through the 
NF-κB signaling pathway and extracellular matrix remodeling, re-
spectively, providing new insights for preclinical development of 
macrophage-targeted immunotherapy.11

Co-detection by indexing (CODEX) multiplexed imaging fur-
ther quantifies co-expression patterns of immune checkpoints at 
single-cell resolution. Using CODEX to analyze tumors from blad-
der cancer patients, it was found that CDH12+ epithelial cells ex-
pressed programmed cell death ligand 1 (PD-L1) and PD-L2 and 
co-localized with CD8+ T cells exhibiting an exhausted phenotype. 
This demonstrates that spatial information obtained through this 
technology can uncover the cellular basis for improved responses 

to immune checkpoint blockade.12 Additionally, AI models trained 
on intercellular communication networks derived from patient 
tumor transcriptomes predict patient responses to immune check-
point inhibitors in ST with over 80% accuracy, guiding ongoing 
clinical trials.13 Meanwhile, a research team developed a strategy 
co-delivering vitamin D receptor ligand and chemokine C-X-C 
motif chemokine ligand 9 (CXCL9) via a nano-chaperone. Using 
CODEX to quantify PD-1/lymphocyte activation gene-3 (LAG-3) 
co-expression within CAF barriers, this approach significantly en-
hanced CD8+ T cell infiltration and synergistically improved the 
therapeutic efficacy of anti-PD-1 and gemcitabine by reversing 
CAF activation status and establishing a CXCL9 gradient.14

AI-driven targeting of historically undruggable targets
The intersection of AI with structural biology and computational 
chemistry is revolutionizing research strategies for historically 
“undruggable” targets, opening new avenues for targeting key 
oncogenic proteins such as KRAS (Fig. 1). Mutations in KRAS 
exist in approximately 25% of human ST, and breakthroughs in 
targeting KRAS represent significant progress in cancer treatment. 
Recent advances demonstrate AI’s capacity to overcome KRAS’s 
smooth surface and minimal binding pockets through diverse strat-
egies. For allosteric inhibitors, KRAS conformations predicted by 
AlphaFold2 combined with reinforcement learning (RL) enabled 
optimization of covalent compounds targeting the G12C muta-
tion. This approach supported the development of drugs such as 
AMG510 (sotorasib) and MRTX849 (adagrasib). AMG510 be-
came the first clinically approved drug targeting KRAS (G12C), 
indicated for non-small cell lung cancer (NSCLC).15 Additionally, 
novel candidates such as glecirasib have been approved for KRAS 
G12C mutant NSCLC and pancreatic cancer, demonstrating prom-
ising clinical efficacy and manageable safety profiles.16

PROTAC molecular design typically involves three com-
ponents: the warhead, linker, and E3 ligand. The design of the 
warhead and E3 ligand generally follows small-molecule drug 
design principles. However, linker design is more complex and 
challenging, as it critically influences PROTAC conformation 
and protein degradation efficiency. AI tools model and evaluate 
the POI-PROTAC-E3 ligase ternary complex structure, assisting 
or automatically generating the linker portion, greatly improving 
design efficiency and accuracy.17 The DL model PROTAC-RL in-
tegrates the Transformer network and molecular dynamics to de-
sign BRD4 degraders with enhanced pharmacokinetic properties; 
these are currently in preclinical studies.18 KT-333, a PROTAC tar-
geting STAT3 via a von Hippel-Lindau tumor suppressor (VHL)-
dependent mechanism, is in phase 1a/1b trials for various condi-
tions including R/R B- and T-cell lymphomas, classical Hodgkin 
lymphoma, ST, and large granular lymphocytic-leukemia/T-cell 
prolymphocytic leukemia, exhibiting a 31.4% objective response 
rate with 51 patients enrolled.19

For molecular glues, generated surface pocket prediction mod-
els have enabled targeting of non-G12C KRAS mutants. One 
research team proposed a quantum-classical hybrid framework 
combining a quantum variational generative model and a long 
short-term memory network. After training, ISM061-018-2 ex-
hibited superior binding potency to the target protein compared to 
other molecules and showed no significant nonspecific cytotoxic-
ity at high concentrations.20 MRT-2359, an oral GSPT1 molecular 
glue degrader designed by Monte Rosa using the QuEEN platform, 
recruits the CRBN E3 ligase to degrade KRAS. It demonstrates ef-
fective GSPT1 degradation and anti-tumor activity in vitro and in 
vivo, and is currently undergoing Phase I clinical trials.21
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AI-optimized drug design

Small-molecule drugs
The integration of generative chemistry with AI has catalyzed a 
paradigm shift in drug discovery, enabling unprecedented effi-
ciency in designing novel therapeutics.22 The AI-driven target dis-
covery platform PandaOmics and the generative AI drug design 
platform Chemistry42 successfully designed a novel ectonucleo-
tide pyrophosphatase/phosphodiesterase 1 (ENPP1) small-mole-
cule inhibitor, ISM5939, which can more effectively and safely 
modulate the STING pathway in preclinical models. This study 
provides evidence supporting ENPP1 as an innate immune check-
point in STs. Additionally, this drug received clinical trial authori-
zation from the FDA in November 2024 and is being developed as 
an immunotherapy candidate targeting ENPP1.23 Similarly, with 
Chemistry42’s assistance, ISM3091, a highly selective orally ad-
ministered small-molecule inhibitor with “best-in-class” potential, 
was developed targeting USP1, a novel synthetic lethal target in-
volved in DNA damage and repair pathways. From target identi-
fication to FDA approval took only 30 months, with fewer than 
80 compounds synthesized, a 70% reduction compared to tradi-
tional timelines. ISM3091 is currently being evaluated in a Phase I 
clinical trial in patients with STs. Through AI prediction, Traf2 and 
non-catalytic region of tyrosine kinase adaptor protein 1 (NCK)-
interacting kinase was successfully identified as a new target.24 
Using an AI-driven approach, INS018_055, a small-molecule 
Traf2 and NCK-interacting kinase inhibitor, was generated. This 
inhibitor demonstrates favorable pharmacological properties and 
anti-fibrotic activity in multiple organs following oral, inhalation, 
or topical administration and has been validated in Phase I clini-
cal trials. This work spanned approximately 18 months from target 

discovery to preclinical candidate nomination, showcasing the ca-
pabilities of the generative AI-driven drug discovery pipeline.25 To 
overcome epidermal growth factor receptor C797S-mediated drug 
resistance in NSCLC, multiple small-molecule inhibitors were de-
signed and synthesized by integrating the whole quadratic effect 
model and the Lasso model. Virtual screening using these models 
identified four candidate compounds with their pharmacokinetic 
and toxicological properties.26 Similarly, the Delete framework, 
based on RL, combines equivariant neural networks and struc-
tural modeling to design allosteric inhibitors. The leukocyte tyros-
ine kinase inhibitor CA-B-1 achieves nanomolar potency in vivo 
through optimization of protein-ligand interactions. This study 
highlights the transformative potential of structure-based molecu-
lar generation techniques, accelerating drug design within one and 
a half months.27

The integration of AI into drug design has dramatically acceler-
ated early-stage discovery, particularly hit identification and toxic-
ity prediction. Traditional hit discovery, which typically took six to 
twelve months via high-throughput screening, is now compressed 
to two to four weeks using generative AI platforms. Identifying 
cytotoxic compounds early is crucial, as cytotoxicity is a major 
cause of drug development failures, particularly in the preclinical 
stage. Traditional toxicity prediction methods have an accuracy of 
approximately 60%, while AI tools integrating multi-omics data 
and chemical properties can now exceed 85% accuracy. Machine 
learning-based toxicity prediction tools such as BoneToxPD and 
Cyto-Safe enhance organ-specific toxicity assessment by analyz-
ing data from multiple databases, enabling early risk mitigation in 
environmental and clinical settings.28,29 Meanwhile, the CURATE.
AI platform analyzes small patient-specific datasets to dynami-
cally adjust chemotherapy dosages. This method has been success-

Fig. 1. Schematic of AI-driven target discovery. Integrating computational models (SELFormer, AlphaFold2, scConGraph, PROTAC-RL) with multi-omics data 
to validate historically undruggable targets (e.g., KRAS via sotorasib/glecirasib/adagrasib), enabling patient-specific screening and prioritization through 
clinical data (CT/EHR) and computational screening. AI, artificial intelligence; CT, computed tomography; EHR, electronic health record; KRAS, kirsten rat 
sarcoma viral oncogene homolog; PROTAC-RL, proteolysis-targeting chimeras (PROTAC)-reinforcement learning.
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fully adapted to the complex conditions of patients with advanced 
STs, achieving high treatment adherence and personalized thera-
peutic outcomes.30

Biologics
Antibody-drug conjugates (ADCs), which precisely deliver cyto-
toxic payloads to tumor cells, have emerged as “biological mis-
siles” in cancer therapy.31 However, ADC development faces 
multifaceted challenges, including target selection, molecular 
stability, and controlled toxin release.32 Recently, AI technolo-
gies have markedly enhanced the design efficiency and precision 
of ADCs by optimizing three core elements: target selection, an-
tibody engineering, and linker design. AI models predict antigen 
internalization efficiency by analyzing spatial transcriptomics and 
membrane protein dynamics, enabling prioritization of targets 
with optimal internalization rates while avoiding markers prone 
to drug resistance. Compared to traditional methods, this approach 
shortens target validation time by over 50%. This study accurately 
predicted the efficacy of next-generation ADC SHR-A1811 in 
neoadjuvant therapy for human epidermal growth factor receptor 
2 (HER2)-positive breast cancer, potentially redefining treatment 
paradigms.33 DL frameworks reduce immunogenicity by simulat-
ing humanized antibody sequences and paratope-epitope interac-
tions. Lantern Pharma identified multiple potential payload mol-
ecules through its proprietary AI platform Response Algorithm 
for Drug positioning and Rescue (RADR®) and validated their 
antitumor activity in preclinical studies. The platform’s ability to 
predict mutation-specific responses may enable more precise pa-
tient stratification in clinical trials, potentially improving success 
rates and reducing costs.34 As a new generation of ADCs, Enhertu 
increases the drug-antibody ratio from 2–4 in traditional ADCs to 
8 through unique structural design and AI-assisted optimization, 
significantly enhancing antitumor activity. It has achieved a break-
through in clinical trials by improving the objective response rate 

by over 40% and has expanded its application to HER2 low/ultra-
low expression populations, demonstrating significant potential 
for pan-cancer indications.35

Messenger RNA (mRNA) vaccines
Neoantigens, which are immunogenic peptides derived from 
tumor-specific mutations, serve as critical targets for activating 
T cell-mediated antitumor responses.36 These neoantigens can 
function as effective targets for cancer vaccines to facilitate tu-
mor rejection.37 AI, through DL and machine learning models, 
has significantly enhanced neoantigen screening efficiency and 
vaccine design precision. Müller developed a machine learning-
based approach integrating data from 120 cancer patients across 
the National Cancer Institute and Tumor Neoantigen Selection Al-
liance, achieving a 30% improvement in prediction accuracy of 
immunogenic neoantigens.38 Feng et al.39 introduced the Physical-
Inspired Sliding Transformer algorithm, enabling precise predic-
tion of TCR-antigen-HLA binding and neoantigen prioritization 
with over 90% accuracy. This method was validated in a prostate 
cancer clinical study, where physics-inspired sliding transformer 
(PISTE)-predicted neoantigens induced immune responses in 75% 
of patients.39 Li et al. created the Spliced Neo Antigen Finder, a 
computational tool identifying shared spliced neoantigens in over 
90% of melanoma patients, offering novel therapeutic targets.40

mRNA vaccines have emerged as a rapid, flexible, and scalable 
strategy in cancer immunology, eliciting robust and targeted im-
mune responses. In mRNA vaccine design, AI further optimizes 
sequence encoding and delivery systems (Fig. 2). The LinearDe-
sign algorithm leverages computational linguistics concepts to op-
timize mRNA stability and codon optimality concurrently, design-
ing optimal mRNA sequences in as little as 11 m. This provides 
a rapid solution for developing mRNA-based vaccines and other 
therapeutics encoding proteins such as monoclonal antibodies and 
anticancer agents.41 XGBoost, optimized through hyperparameter 

Fig. 2. Workflow for AI-optimized mRNA vaccine design. Predicting neoantigen immunogenicity to activate cytotoxic T cells, followed by AI-enhanced 
mRNA sequence stabilization and LNP formulation tuning for dendritic cell targeting, thermostability, and preclinical validation. AI, artificial intelligence; 
LNP, lipid nanoparticle; mRNA, messenger RNA.
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tuning, can precisely quantify critical formulation characteris-
tics including mRNA thermodynamic stability, lipid nanoparticle 
(LNP) encapsulation efficiency, and cellular delivery performance, 
enabling rational design of next-generation RNA therapeutics.42 
Recent applications demonstrate that integrating these technolo-
gies enhances critical mRNA-LNP performance metrics, includ-
ing improved vaccine thermostability and tailored lipid formula-
tions for efficient intracellular delivery to antigen-presenting cells 
such as dendritic cells.43 Additionally, deep neural networks can 
optimize formulations to enhance cancer antigen presentation to 
immune cells within the TME, significantly improving mRNA-
based cancer vaccine efficacy.44 By integrating complex structural, 
chemical, and biological datasets, graph convolutional networks 
(GCN) provides a comprehensive computational framework to 
address challenges in mRNA-LNP vaccine development. These 
advances accelerate the creation of vaccines with precise cellular 
delivery mechanisms and enhanced immunogenicity, driving in-
novation in cancer immunotherapy and infectious disease preven-
tion.45

Challenges in clinical translation

Three major validation gaps
The clinical translation of AI-driven oncology drugs faces three 
critical validation gaps, each demanding innovative computational 
solutions. The in vitro–in vivo gap remains a major bottleneck, as 
traditional cell lines do not adequately mimic the human TME. 
To address this, an organ-on-a-chip platform combined with feder-
ated learning has emerged. The InSMAR-chip technology enables 
high-throughput drug testing on patient-derived organoids from 
lung cancer patients, preserving tumor-stroma interactions and 
shortening the testing period to one week. This cutting-edge tech-
nology, combining chips with organoids, promises breakthroughs 
in predicting clinical drug responses for tumor organoids.46 The 
GLI-SMARchip model combines lung cancer patient-derived 
organoids with peripheral immune cells to simulate systemic tu-
mor-immune interactions. By evaluating the response index after 
immunotherapy, this platform found that the response index was 
highly correlated with actual clinical outcomes. This study is the 
first to reconstruct in vitro the systemic tumor immune compo-
nents of lung cancer patients and simulate corresponding tumor 
immune response processes, overcoming limitations of traditional 
models in assessing systemic immunity.47

Racial sensitivity differences in drug efficacy require AI solu-
tions tailored to specific populations. Adversarial debiasing algo-
rithms have been used to address underrepresentation in genomic 
datasets. Traditional AI models are mostly trained on data from 
European and American populations, leading to significant predic-
tion biases for groups such as those in Asia and Africa. Research 
has found that medical AI models may amplify racial disparities if 
they do not adjust for social determinants of health (e.g., insurance 
status, healthcare resource accessibility associated with postal 
codes).48 Another study indicates that AI models can help tailor 
medications specifically for the African population by utilizing 
population-specific data, enabling safer, more effective treatments 
and reducing healthcare costs across the continent.49

In drug resistance prediction, static models fail to capture the 
evolutionary dynamics of tumors. Computational models simu-
lating clonal dynamics under therapeutic pressure have shown 
promise. A novel disentangled synthesis network, DiSyn, ef-
fectively generalizes knowledge extracted from tumor cell line 

models to patient data, achieving state-of-the-art performance in 
drug response prediction.50 The research team also constructed a 
dual-view DL model, JointSyn, to predict synergistic effects of 
drug combinations. Data showed this model outperformed exist-
ing state-of-the-art methods in predictive accuracy and robust-
ness across benchmarks. Furthermore, the fine-tuned JointSyn 
improved generalization ability to predict new drug combinations 
and cancer samples with limited experimental data, demonstrating 
strong generalization performance.51

Data and algorithmic biases
AI-driven clinical translation of oncology drugs faces significant 
barriers as data and algorithmic biases undermine the generaliz-
ability of models across diverse populations and technical envi-
ronments. Fundamental challenges include systematic underrep-
resentation of minority populations in training cohorts, which 
propagates through clinical predictions as degraded performance 
in ethnic subgroups and resource-limited settings, and unmitigated 
domain shifts when models trained in tertiary hospitals are de-
ployed in community clinics.52 Technical bias arises from artifacts 
in scRNA-seq, where tissue dissociation protocols can alter the 
characterization of cell states. This issue can be addressed through 
cross-validation with spatial transcriptomics, a method that maps 
gene expression within intact tissue architecture to confirm cell-
cell interaction networks missed in dissociated cells.11 Temporal 
bias occurs when training data excludes recent therapeutic targets 
(e.g., KRAS G12C inhibitors), causing models to overlook emerg-
ing resistance mechanisms. Dynamic incremental learning frame-
works such as CODE-AE reduce prediction errors by up to 40% 
for novel targets like PROTAC degraders, through self-supervised 
adaptation that continuously integrates new clinical trial data.53

These issues are compounded by miscalibrated probability out-
puts that disproportionately misestimate risks for marginalized 
groups in high-stakes decisions such as survival prediction and 
treatment allocation. Effective mitigation requires embedding ad-
versarial debiasing during model training to disentangle protected 
attributes and adopting federated domain adaptation techniques to 
align feature distributions across heterogeneous healthcare envi-
ronments without centralizing sensitive data. Such multilayered 
interventions must be prioritized to prevent perpetuation of health-
care disparities through automated systems.54

Future perspective

Short-term breakthrough (two to three years)
The integration of multimodal foundation models with quantum 
computing holds great promise for overcoming key barriers in ST 
drug development. IBM’s MoLFormer, a multimodal foundation 
model that integrates spatial transcriptomics, circulating tumor 
DNA dynamics, and histopathology, has demonstrated superior 
performance in predicting resistance to immunotherapy compared 
to single-modal models.55 Simultaneously, quantum-accelerated 
PROTAC design is revolutionizing treatments for historically 
“undruggable” targets. The quantum-optimized B-cell lymphoma-
extra-large degrader exemplifies this approach, showing a five-
fold increase in degradation efficiency while reducing the risk of 
thrombocytopenia, thereby showcasing quantum computing’s po-
tential in generating experimentally validated drug candidates.20

Longitudinal transformation (five to ten years)
Looking ahead, AI is expected to enable a 72h precision oncol-
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ogy closed-loop system that integrates robotic biopsy, nanopore 
sequencing, federated learning-driven variant detection, and on-
demand good manufacturing practice production of tumor-specific 
LNPs. This workflow has already proven feasible in patient-specif-
ic KRAS G12D inhibitor trials using pancreatic cancer organoids, 
completing the process from biopsy to infusion in just three days, 
thereby significantly enhancing treatment efficiency.33 In parallel, 
AI-guided chimeric antigen receptor macrophages (CAR-M) are 
transforming immunotherapy. An mRNA-LNP delivery system 
has been developed for intraperitoneal programming of custom-
ized CAR-M in vivo, facilitating reprogramming of the TME. 
These advancements are deepening our understanding of CAR-M 
regulation and feedback mechanisms in ST treatment.56

Conclusions
AI has fundamentally reshaped the paradigm of cancer research 
and clinical oncology, demonstrating transformative potential 
across the entire continuum of cancer management, from early de-
tection and target discovery to drug development and personalized 
treatment (as shown in Fig. 3). However, significant challenges re-
main in translating these advancements into clinical practice. Key 
issues include data and algorithmic bias, lack of model transpar-
ency, the validation gap between preclinical models and human 
physiology, and inequitable application across diverse popula-
tions. Addressing these challenges will require interdisciplinary 
collaboration, robust ethical frameworks, standardized evaluation 
protocols, and adaptive learning systems. Emerging technologies, 
such as quantum computing and multimodal foundation mod-
els, may further strengthen AI’s role in oncology. Ultimately, the 
continued development of AI is indispensable to achieving truly 
personalized, effective, and equitable cancer treatment, translat-

ing scientific breakthroughs into tangible improvements in patient 
survival and quality of life.
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